翻訳と辞書 |
Order-6 square tiling : ウィキペディア英語版 | Order-6 square tiling
In geometry, the order-6 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of . == Symmetry == This tiling represents a hyperbolic kaleidoscope of 4 mirrors meeting as edges of a square, with six squares around every vertex. This symmetry by orbifold notation is called ( *3333) with 4 order-3 mirror intersections. In Coxeter notation can be represented as (), removing two of three mirrors (passing through the square center) in the () symmetry. The *3333 symmetry can be doubled to 663 symmetry by adding a mirror bisecting the fundamental domain. This bicolored square tiling shows the even/odd reflective fundamental square domains of this symmetry. This bicolored tiling has a wythoff construction t1. A second 6-color symmetry can be constructed from a hexagonal symmetry domain.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Order-6 square tiling」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|