翻訳と辞書
Words near each other
・ Order-5 apeirogonal tiling
・ Order-5 cubic honeycomb
・ Order-5 dodecahedral honeycomb
・ Order-5 hexagonal tiling
・ Order-5 hexagonal tiling honeycomb
・ Order-5 icosahedral 120-cell honeycomb
・ Order-5 pentagonal tiling
・ Order-5 square tiling
・ Order-5 tesseractic honeycomb
・ Order-6 cubic honeycomb
・ Order-6 dodecahedral honeycomb
・ Order-6 hexagonal tiling
・ Order-6 hexagonal tiling honeycomb
・ Order-6 octagonal tiling
・ Order-6 pentagonal tiling
Order-6 square tiling
・ Order-6 tetrahedral honeycomb
・ Order-6 triangular hosohedral honeycomb
・ Order-7 heptagonal tiling
・ Order-7 heptagrammic tiling
・ Order-7 hexagonal tiling honeycomb
・ Order-7 square tiling
・ Order-7 tetrahedral honeycomb
・ Order-7 triangular tiling
・ Order-8 hexagonal tiling
・ Order-8 octagonal tiling
・ Order-8 square tiling
・ Order-8 triangular tiling
・ Order-embedding
・ Order-independent transparency


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Order-6 square tiling : ウィキペディア英語版
Order-6 square tiling

In geometry, the order-6 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of .
== Symmetry ==
This tiling represents a hyperbolic kaleidoscope of 4 mirrors meeting as edges of a square, with six squares around every vertex. This symmetry by orbifold notation is called (
*3333) with 4 order-3 mirror intersections. In Coxeter notation can be represented as (), removing two of three mirrors (passing through the square center) in the () symmetry. The
*3333 symmetry can be doubled to 663 symmetry by adding a mirror bisecting the fundamental domain.
This bicolored square tiling shows the even/odd reflective fundamental square domains of this symmetry. This bicolored tiling has a wythoff construction t1. A second 6-color symmetry can be constructed from a hexagonal symmetry domain.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Order-6 square tiling」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.